Seasonal differences of the atmospheric particle size distribution in a metropolitan area in Japan.
نویسندگان
چکیده
We compared the effect of ambient temperature observed in two different seasons on the size distribution and particle number concentration (PNC) as a function of distance (up to ~250 m) from a major traffic road (25% of the vehicles are heavy-duty diesel vehicles). The modal particle diameter was found between 10 and 30 nm at the roadside in the winter. However, there was no peak for this size range in the summer, even at the roadside. Ambient temperature affects both the atmospheric dilution ratio (DR) and the evaporation rate of particles, thus it affects the decay rate of PNC. We corrected the DR effect in order to focus on the effect of particle evaporation on PNC decay. The decay rate of PNC with DR was found to depend on the season and particle diameter. During the winter, the decay rate for smaller particles (<30 nm) was much higher (i.e., the concentration decreased significantly against DR), whereas it was low during the summer. In contrast, for particles >30 nm in diameter, the decay rate was nearly the same during both seasons. This distinction between particles less than or greater than 30 nm in diameter reflects differences in particle volatility properties. Mass-transfer theory was used to estimate evaporation rates of C20-C36 n-alkane particles, which are the major n-alkanes in diesel exhaust particles. The C20-C28 n-alkanes of 30-nm particles completely evaporate at 31.2 °C (summer), and their lifetime is shorter than the transport time of air masses in our region of interest. Absence of the peak at 10-30 nm and the low decay rate of PNC <30 nm in diameter in the summer were likely due to the evaporation of compounds of similar volatilities comparable to the C20-C36 n-alkanes from particles near the exhaust pipes of vehicles, and complete evaporation of semivolatile materials before they reached the roadside. These results suggest that the lifetime of particles <30 nm in diameter depends on the ambient temperature, which differs between seasons. This leads us to conclude that these particles show distinctly different spatial distributions depending on the season.
منابع مشابه
مهم ترین ویژگی های شیمیایی و فیزیکی گرد و غبار اتمسفری شهر کرمان
Dust deposition phenomenon is an important climatic and environmental issue in arid and semi-arid regions. The objective of this study was to examine important characteristics of atmospheric dust in Kerman as one of the major cities in arid areas of our country with high potential of dust production. Dust samples were collected monthly using glass traps installed on the roof of 35 one-story bui...
متن کاملReconstruction of Sea Level Changes using Magnetic Susceptibility Variations in Southeastern Caspian Sea
Magnetic susceptibility is one of the most important tools for monitoring the sediment composition during environmental studies. In this research, in order to reconstruct the Caspian Sea level changes, magnetic susceptibility variations were used during the studies of 5 sedimentary cores (K1, K3, K5, K7, N1), collected from bottom sediments of Gorgan Bay. Samples were analyzed for grain size, t...
متن کاملAssessing Chlorophyll-a in the Southwestern Coastal Waters of the Caspian Sea
Caspian Sea with an average depth of 27m is the largest enclosed water body in the world. Despite its enormity and valuable biotic and economic resources, investigations on the biota and seawater properties are mosaic at best. In previous studies, the monitoring of the chlorophyll-a concentrations in the Southern Caspian Sea was organized based on satellite data sets however, vertical dis...
متن کاملEffect of Vegetation Cover on Energy Consumption Optimization due to Reduction of Urban Heat Island intensity: Case of Tehran Metropolitan Area
Urbanization through rapid constructions, is the main cause of high heat absorption in urban centers. In addition, the accumulation of heat energy resulted by removal of vegetation cover, has contributed to formation of urban heat islands (UHIs). The spatial distribution of heat intensity in Tehran Metropolitan Area was studied, and the influence of land use and green cover were analyzed in the...
متن کاملPARTICLE SIZE CHARACTERIZATION OF NANOPARTICLES – A PRACTICALAPPROACH
Abstract: Most properties of nanoparticles are size-dependent. In fact, the novel properties of nanoaprticles do not prevail until the size has been reduced to the nanometer scale. The particle size and size distribution of alumina nanoparticle, as a critical properties, have been determined by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), surface area analysis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Science of the total environment
دوره 437 شماره
صفحات -
تاریخ انتشار 2012